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Vo= 09 (14)=-28mV
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Example 5.3

A Schmitt trigger with the upper threshold level Viyr = 0V and hysteresis width V<o
converts a 1 kHz sine wave of amplitude 4V, into a square wave. Calculate the t:3 V
duration of the negative and positive portion of the output waveform. mg

Solution v 4
Vir =0
Voy=Viyr - Vi =02V
So, Vipr =-02V
In Fig. 5.9, the angle 68 can be calculated as
~-02=V_sin(n+6)=-V,sin6=-2smn06

0 = arc sin 0.1 = 0.1 radian Yod ﬂT“l:
The period, T = 1/f = 1/1000 = 1 ms
wT, = 21 (1000) Ty = 0.1 i P — —>
T, = (0.1/2 ) ms = 0.016 ms [
So, T,=T2 + Ty = 0.516 ms Fig. 5.9 Circuit for Example 5.3
and T, =T/2 — Ty = 0.484 ms
X3 SQUARE WAVE GENERATOR (ASTABLE MULTIVIBRATOR) i

A simple op-amp square wave generator is shown in Fig. 5.10 (a). Also called a free running
oscillator, the principle of generation of square wave output is to force an op-amp to operate
in the saturation region. In Fig. 5.10 (a) fraction B = R,/(R, + R,) of the output is fed back
to the (+) input terminal. Thus the reference voltage V. is Bv, and may take values as

R VQA
vV VANA—
Vsal =
VU
| ey
A 2 T 6
1 O
?3;/'“‘** + Vo
1 red R1 ?
T C |
Ve T .
ﬁvu RZi )
! -/R
T —- —L = Vsat[1_(1+B)e C]

(a) ) )

Fig. 5.10 (a) Simple op-amp square wave generator (b) Waveforms




Consider an instant of t%me when the output is at +Vea- The capacitor now starts charging
owards +V, through resistance R, as shown in Fig. 5.10 (b). The voltage at the (+) input
srminal 18 held at +BV,, by R, and R, combination. This condition continues as the charge
o C rises, until 1t has just éxceeded + BVt the reference voltage. When the voltage at the
) input terminal becomes just greater than this reference voltage, the output is driven to
;1'm[, At this instant, the voltage on the capacitor is + BV,,.. It begins to discharge through

{

R that is, charges toward — V... When the output voltage switches to -V...» the capacitor
-harges more and more negatively until its voltage just exceeds — BV,,,. The output switches
hack to + Vg The cycle repeats itself as shown in Fig. 5.10 (b).

The frequency 1s determined by the time it takes the capacitor to charge from — BV, . to

' sat
+BV_, and vice versa. The voltage across the capacitor as a function of time is given by,

Uc(t)' = Vf + (‘fl — Vf )e—t/RC (5.4)
where, the final value, Vi,=+V

sat

and the initial value, Vi =-BV,,

Therefore,
Uc(t) = Vsat + (- BVsat o Vsat) e_”RC
or v(t) = Vg, — V.. (1 + B)e?BC (5.5)
Att =T, voltage across the capacitor reaches BV, and switching takes place. Therefore,
v(T)) = BVsat = Vsat — Vsat (1 + B)E_TI!’RC (5.6)
After algebraic manipulation, we get,
_ 1+
T} = RCIn 5.
1 o (5.7)
This give only one half of the period.
Total time period )
T
T = 2T, = 9RC In 11D 5.8 B
1- 2
ang [he 0 . . O
| Utput wave form is symmetrical. U

fR. =
T Ry = R, then B = 0.5, and T = 2RC In 3. And for R, = 1.16R,, it can be seen that

Ut
1
/o 2RC
Th
¢ OutpUt e
swings from +V_, to — V,,,, 80,

Vs Peak-to-peak = 2 V

sat

(5.9)
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Fig. 5.10 (c) Use of back to back zener diodes. (d) Asymmetric square wave generator

The peak to peak output amplitude can be varied by Varlying the power 8upply voltage
However, a better technique 1s to use back to back zener diodes as shown in Fig. 5.10 (0).

The output voltage is regulated to = (Vz + Vp) by the zener diodes.
v, peak-to-peak = 2 (V7 + Vp) (5.10)
Resistor R, limits the currents drawn from the op-amp to,

-V
Vsat Z 6.1 )
Ry

This circuit works reasonably well at audio frequencies. At higher frequencies, however,

slew-rate of the op-amp limits the slope of the output square wave.
If an asymmetric square wave 1s desired, then zener diodes with different break down

voltages V,; and Vy, may be used. Then the output is either V,; or V,, whe1.'e 1=Vt
V, and V,, = Vg, + Vp. It can be easily shown that the positive section is given by,

T, = RC In 1B Vee/Vox (.12
1-3

The duration of negative section T, will be the same as given by Eq. (5.12) with V., and

, interchanged.
An alternative method to get asymmetric square wave output 1s to add a dc voltage source

V in series R, as shown in Fig. 5.10 (d). Now the capacitor C swings between the VOM%E
levels (BV.,, + V) and (- BV, + V). If the voltage source V is made variable, voltage
frequency conversion can be achieved though the variation will not be linear.

The {:1'1'('.31.1.1't

I, =

V.

0

X5} MONOSTABLE MULTIVIBRATOR

Monostable multivibrator has one stable state and the other is quasi stable state. o
is useful for generating single output pulse of adjustable time duration in response ol
triggering signal. The width of the output pulse depends only on external components @Pgleamr.
to the op-amp. The circuit shown in Fig. 5.11(a) is a modified form of the astable multiviof

e
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Fig. 5.11 (a) Monostable multivibrater, (b) Negative going triggering signal,
(c) Capacitor waveform, (d) Output voltage waveform

. Adiode D, clamps the capacitor voltage to 0.7 V when the output is at +V,,. A negative going
-~ pulse signal of magnitude V| passing through the differentiator R,C, and diode D, produces a
. negative going triggering impulse and is applied to the (+) input terminal.

To analyse the circuit, let us assume that in the stable state, the output Uo 18 at +V,. The
-~ diode D; conducts and v, the voltage across the capacitor C gets clamped to +0.7 V. The
voltage at the (+) input terminal through R\R, potentiometric divider is +BV,,. Now, if
. a negative trigger of magnitude V| is applied to the (+) input terminal so that the effective
. signal at this terminal is less than 0.7 V, i.e. ([B V,,, + (- V)] < 0.7 V), the output of the op-
- amp will switch from + V,,, to - V,,,. The diode will now get reverse biased and the capacitor
| starts charging exponentially to —Viae through the resistance R. The voltage at the (+) Input
. terminal is now — 3 V.. When the capacitor voltage v, becomes just slightly more negative
 than —B V,,,, the output of the op-amp switches back to + Ve The capacitor C now starts
| charging to +V,, through R until v, is 0.7V as capacitor C gets clamped to the voltage.
| Various waveforms are shown in Fig. 5.11 (b, ¢, d).

. The pulse width T of monostable multivibrator is calculated as follows:

. The general solution for a single time constant low pass RC circuit with V, and V; as initial
' and fina) values is,

v, = Vi + (V, = Ve '/RC (5.13)

l. * For the cireuit, Vi = -V, and V. = V|, (diode forward voltage).
The output U, 18,

" Ve = —VHHL t (V]) + Vaul.) G-HRC (511)
P at | = T
f Vo = — annt. (515)
Th@l‘(}f()rtf,
“ ‘hl[ =~ Vit : (VD T anL)P--’Hm‘l
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where B = Ry/(R, + Ry)
If, Vi >> Vp and R, = R, so that B = 0.5, then

T=0.69 RC (5.17)

For monostable operation, the trigger pulse width T, should be much less than T, the
pulse width of the monostable multivibrator. The diode D, is used to avoid malfunctioning
by blocking the positive noise spikes that may be present at the differentiated trigger input.

It may be noted from Fig. 5.11 (b) that capacitor voltage v, reaches its quiescent valye Vi
at T" > T. Therefore, it is essential that a recovery time T’ —T be allowed to elapse before
the next triggering signal is applied. The circuit of Fig. 5.11 (a) can be modified to achieye
voltage to time delay conversion as in the case of square wave generator. The monostabje
multivibrator circuit is also referred to as time delay circuit as 1t generates a fast transitiop
at a predetermined time T after the application of input trigger. It is also called a gating
circuit as it generates a rectangular waveform at a definite time and thus could be useq tq
gate parts of a system.

EXJ TRIANGULAR WAVE GENERATOR Fostn

A triangular wave can be simply obtained by integrating a square wave as shown in Fig.
5.12 (a). It is obvious that the frequency of the square wave and triangular wave is the same
as shown in Fig. 5.12 (b). Although the amplitude of the square wave is constant at +V__
the amplitude of the triangular wave will decrease as the frequency increases. This is
because the reactance of the capacitor C, in the feedback circuit decreases at high frequencies.
A resistance R, is connected across C, to avold the saturation problem at low frequencies as
in the case of practical integrator.

R R,=10R,
VAVAVAVAY —VVVWA—
| |
JUL C,
Y —_ ?V;
N\ —
R, —0
—+ + v,
— C R,
Rmmp
R,
k4 T

(a) (b)

Fig. 5.12 (a) Triangular waveform generator, (b) Output waveform

Another triangular wave generator using lesser number of components is shown 11 Fig.
5.13 (a). It basically consists of a two level comparator followed by an integrator. The Ol_ltput
of the comparator A, is a square wave of amplitude + V,,, and is applied to the (-) mpu
terminal of the integrator A, producing a triangular wave. This triangular wave 1S fed bac

as input to the comparator A; through a voltage divider R,R..




Fig. 5.13 (a) Trianguiar waveform generator using lesser components, (b) Waveforms

1nnally. let us consider that the output of comparator 4, is at + V... The output of the
wor A, will be a negative going ramp as shown in Fig. 5.13 (b). Thus one end of the
«itage divider RoR; 1s at a voltage + V_; and the other at the negative going ramp of A..
At atime t = {;. When the negative going ramp attains a value of —V 2z, the effective voltage
g2 point P becomes shghtly less than OV. This switches the output of A, from positive
sturation W negative saturation level —V_ . During the time when the output of A, is at
_V_. the output of A, increases 1n the positive direction. And at the instant f = ¢, the
woltage at point P becomes just above 0 V. thereby switching the output of 4, from -V, to
-V The cvcle repeats and generates a triangular waveform. It can be seen that the
frequency of the square wave and triangular wave will be the same. However, the amplitude
o the triangular wave depends upon the RC value of the integrator A, and the output
voltage level of A;. The output voltage of A, can be set to desired level by using appropriate
gener diodes. The frequency of the trangular waveform can be calculated as follows:

The effective voltage at point P durning the tme when output of 4, 1s at +V__ level is given
5.

R -
Vo ELF. +Veat = (= Viamp)| (5.18)
At t = t,. the voltage at point P becomes equal to zero. Therefore. from Eq. (5.18),
. _ R, -
— vramp = _R_3(+ Vsat) (5.19)
Similarly, at t = t,, when the output of A, switches from - V_, to + V..
: —1y _ Ry <
4 - (= Vear) (Veat) (5.20)
ramp R3 sat R3 t

Therefore, peak to peak amplitude of the triangular wave is,
0y OP) =+ Voo — (Vi) = 2 -I-;Rlvm (3.21)
3

meThe output switches from -V, to +Vramp In half the time perniod 772. Putting

values in the basic integrator equation

Chapter 5
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1
v = ~Rg V19!
T2
1 Vsat (T)
= - V)dt = |
_ v, (pp)
or, T = 2 Rlcl V (522)

sat

Putting the value of v, (pp) from Eq. (6.21), we get

7= 4R,C,R,
R,
Hence the frequency of oscillation f 1s,
1 R,
— - 2.2,
fo = T IR.C.R, .

Therefore, the triangular wave oscillates between + 7V and — 7V.

Sawtooth Wave Generator

The difference between the triangular and sawtooth waveforms is that the rise time of a
triangular wave is always equal to its fall time. That is, the same amount of time 1s taken by
the triangular wave to swing from -V, to + V., as from + V., to =V . On the other
hand, the sawtooth waveform has unequal rise and fall times. That is, 1t may rise many times
faster than it falls negatively, or vice versa. The triangular wave generator is as shown in

Fig 5.14.

+

§ = *Vee Rulv 02 kQ
R, :

+—WWW > _Vee
Duty cycle adjust

Fig. 5.14 Sawtooth Wave Generator
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angular wave generator can be converted into a sawtooth wave generator by applying

- vanable dc voltage mto the noninverting Ft‘lminzﬂ of the integrator A,. This can be accompalished
| pv usLNE the potennometeriand conne(::tmg it to the +V o and +V} as shown in Fig 5.14.

" pepending on the R, setting. a certain dc level is inserted in the output of A,. Now, supposc

- pat the output of -4, 1s a square wave and the potentiometer R, is adjusted for a certain de

ovel. This means that the output of A, will be a triangular wave, rising on some dc level that

< 3 function of th_e R, settlr}g. The duty cycle of the square wave will be determined by the

- polarity and amplitude ?.f this dc }evel. A duty cycle less than 50% will then cause the output

- A, to be a sawtopt_h. With t.he: wiper at the center of R, the output of A, is a triangular wave.

For any other position of R, wiper. the output is a sawtooth waveform. Specifically as the R,

wiper 15 moved toward —Vig. the rise time of the sawtooth wave becomes longer than the fall

gme as shown 1n Flg 9.15.

The t11

4 Voltage

LA AN
VIV

< >
Risetime| < T —

Fig. 5.15 Sawtooth waveform
On the otherhand, as the wiper is moved towards +Vcc, the fall time becomes longer
 than the rise time. Also, the frequency of the Sawtooth decreases as R, 1s adjusted towards +Vc
3 DI"'VEE
However, the amplitude of the sawtooth wave is independent of the R, setting.

r 5

- Example 5.4
- Design a sawtooth wave generator for 10V peak and frequency of 200 Hz. Assume V,; =2V and

- Ver= 10V,

L Solution

" Thf" ramp signal rises at a rate of 2V/ms. Therefore, choose a time constant of R,C to produce
- 4Ume period of 1.0 ms.

A ¥
if*.—fi 1

o

f_..i
B

Let R =10 kQ and C = 0.1 uF. We know that f:fl\Vi
1 : ; ROV,
TherEfOre /"___ 1 : (E) — 900 Hz
(10 x10%) (0.1 x107°) \10
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EXA BASIC PRINCIPLE OF SINE WAVE OSCILLATORS

The basic structure of sine wave oscillators based on the use of feedback in amplifiers g
in Fig. 5.16. It consists of an amplifier with gain A and a frequency selective feedback n:
(having 1nductor or capacitive components) with the transfer ratio B. It may be noteg that
loop 1s incomplete as the terminal 2 is not connected to terminal 1. To understand the oper tt-:he
of the circuit, consider the situation where an input signal U; 1s applied at the inpyt ter;hl]oar}

1 of the amplifier, so that the output v, = A v,. The feedback signal Up at terminal 2, theyef,
1s Uy = AP v,. The quantity AP, therefore, represents :

howy,
twork

the loop gain of the system. If the valuesof Aandp 1 Y Basic V.<Ay
are adjusted so that Af = 1, the feedback signal vy amplifier A ]» ~
will be 1dentically equal to the externally applied signal 20 v,=AB v
v;. If the terminal 2 is now connected to terminal 1 o
and the external signal v, is removed, the circuit will Frequency I
continue to provide output as the amplifier can not selective
distinguish whether v, is coming from external source = feedback | —e—
or from the feedback circuit. Thus, output signal can TIOWALS: P
be continuously obtained without any input signal if Fig. 5.16 Basic structure of 3
we can satisfy the condition on the loop gain, that 1s, feedback osdillator
AB =1 (5.24)

This is called Barkhausen criterion for oscillations. The condition AP = 1 can be satisfied
only at one specific frequency, f, for the given component values. The circuit thus provides
output at frequency, f, where the circuit components meets the condition given by Eq. (5.24).
We may rewrite Eq. (5.24) as

Ao, Bou, =1 £0° (5.25)

There are infact two conditions in Eq. (5.25), cne on phase and other on the magnitude of
the loop gain which needs to be simultaneously satisfied to achieve oscillations. Thus, according
to Eq. (5.25) the total phase shift of the loop gain should be zero or multiples of 27 and the
magnitude of the loop gain, AP should be equal to umty. That 1s

|AB| =1 (5.26)
ZAB = 0° or multiples of 2 (5.27)

The condition |AB| =1 is usually difficult to maintain in the circuit as the values of A and
B vary due to temperature variations, aging of components, change of supply voltage etc. If A gL
becomes less than unity, the feedback signal v; goes on reducing in each feedback CYCIE_and_t S
oscillations will die down eventually. In order to ensure that the circuit sustains OSFIHBUOZ
inspite of variations, the circuit is designed so that | AB| is slightly greater than unity- Noaﬂ'
the output amplitude will go on increasing with every feedback cycle. The signal, howfaver, ih :
not go on increasing and gets limited due to the non-linearity of the device, that 18 ashjCh
transistor enters into saturation. Thus it is the non-linearity of the transistor because of W .
the sustained oscillations can be achieved. The value of AB is usually kept greater
to 5% to ensure that | AB| does not fall below unity. In explaining the principle 0

ﬂ___—nﬂﬁﬂ.'
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in Fig. 5.14, we had assumed that we first connect a signal source to start the oscillations and
ater remove 1t. In a practical oscillator, however, it is not done so. The output waveform is
{ obtained as soon as power is turned on. Actually, there is noise signal always present at the
input (1.€. base) of the transistor due to temperature (called Johnson’s noise) or variation in the
| carrier concentration (Schottky noise). The noise signal at the frequency at which the circuit
| satisfies the condition |AB| =1 is picked up and amplified. Since |AB| > 1 in the circuit, the
: output signal goes on Increasing
| until it is limited by the onset of
' non-linearity of the transistor (as

__ transistor enters 1into saturation) /v = + f

' a5 shown in Fig. 5.15.

There are different types of Noise voltage at
. . : the frequency for

' sine-wave oscillators available - AB| = 1 Oscillations grow |

according to the range of as |AB| > 1 Ampltlﬁﬂdde becomes

| . constant as transistor

. frequency. The R'C-phase Shﬂft goes into saturation

. oscillators can provide frequencies

' varying from a few hertz to

 several hundred kHz. LC

' oscillators are suztable for high frequencies up to hundreds of MHz. Here we will discuss only

two types of audio frequency RC phase shift oscillators.
RC-Phase Shift Oscillator

The circuit of an RC-phase shift oscillator is shown — ___ _______________ Y _Amolifier
" in Fig. 5.16 (a). The op-amp is used in the inverting : R LR
. mode and therefore provides 180° phase shift. The |
' additional phase of 180° is provided by the RC A \
| feedback network to obtain a total phase shift of : — o
|
b
|
!

Fig. 5.17 Showing constant output amplitude as transistor
goes into saturation (|AB| > 1)

!
|
1

- 360°. The feedback network consists of three identical
. RC stages. Each of the RC stage provides a 60°
| phase shift so that the total phase shift due to | _____ ¥ ,
- feedback network is 180°. It is not necessary that
 all the three RC sections are identical so long the

ul]l VA% I

| | | |
| I | | !
‘ A C C l
. botal phase shift is 180°. However, if we use non- : 2 !
- identinat L . v|'9 R R R |
. “éntical stages, it is possible that the total phase : ' Feedback
shift is 1800 for more than one frequency. This ' ¥ N < :” network

l:’h‘?l'l'i)l:nenon can lead to undesirable inter-modal
'_ 0301|lation5_

_ The feedback factor B of the RC network can be
:_ Caleulateq by writing the KVL equations from Fig. 5.16 (b).

Fig. 5.18 (a) Phase shift oscillator

Chapter 5
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I, (R+—-1—}—12R =V, (5.28) + }
sC

Vv
sC |
Fig. 5.18 (b) Calculating B from the ph
0-I,R +1, (2 f +'s_15) - A 9 548 O i network hase
and Ve= LR (5.31)
Solving Egs. (5.28), (5.29) and (5.30) for I3, we get
V. R%°C’
I = 222, I8Pl (5.32)
1+ 5sRC + 6s°C°R* +s°C°R
V. R3s3C°
= = > 5.33
- Vi= L 1+ 5sRC + 6s’C?R? + s°C°R° (533
= ; 15 1 (5.34)
- +
Lt ke T S2CR? T SO°R
Replacing s = jo, §° = —»? and s® = —jo°, we get
- - 0.3
B_ 1 6 B A N 1 ( .« 5)
joRC ?R*C? jw’R°C’
= - (5.36)
(1-502)+ jo(6 - o)
! 3
where o= B (5.37)
For AB = 1, B should be real, that 1s the imaginary term in Eq. (5.36) must be zero. Thus
o (6 —0)=0 (5.38)
or, o’ =6
o= 6
That 1s 1. J—
’ wRC 6

The frequency of oscillation, f,, is therefore given by

1 (5.39)
on RC V6

fo=
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purting o> = 6 in Eq. (5.36), we get

B = 219 (5.40)
The negative sign indicates that the feedback network produces a phase shift of 180°.
>0- e 2];9
Since |ABl > 1
Therefore, for sustained oscillations,
|A| > 29 (5.41)

. That is the gain of the inverting op-amp should be atleast 29, or R; = 29 R,. The gain A,
E kept greater than 29 to ensure that variations in circuit parameters will not make |[A, |

<1 otherwise oscillations will die out.
For low frequencies (< 1 kHz), op-amp 741 may be used, however, for high frequencies, LM

318 or LF 351 should be used.

‘Example 5.5
Design a phase shift oscillator of Fig. 5.17 to oscillate at 100 Hz.

- Solution
' Let C = 0.1 pF. Then from Eq. (5.25)

1
R = —6.49 kO
J6 21 (10°7)(100)

Use R = 6.5 kQ |
To prevent loading of the amplifier by RC network, R, < 10 R
Therefore, let R, = 10 R = 65 k(2
Since R, =29 R,
R, = 1885 k{2

 Wien Bridge Oscillator

| Another commonly used audio frequency .
oscillator is a Wien bridge oscillator. The circuit 1

18 shown in Fig. 5.19. It may be noted that the
feedback signal in this circuit is connected to

Chapter 5

:

C,
the non-invertin g (+) input terminal so that the v, T T
_.O’p-amp 18 working as a non-inverting amplifier. l -
Therefore, the feedback network need not provide R,S C
f" a"}' Phase shift. The circuit can be viewed as a
: 1 &"a bridge with a series RC network ir} one
_ - };’j i para].]”el RC network in the adj(?lmng 2 R,
" es1stors | and Ry are connected in the _J_

l'emr T i
'lhif: ;Tsug ZW(; arms. The condition of zero phase =
; Nnd the civelnit . i ,

__'the bridge_ e circuit is achieved by balancing Fig. 5.19 Wien bridge oscillator

b,
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The circuit has been redrawn to show the
bridge network in Fig. 5.20. The output ac signal
of the op-amp amplifier is fed back to point A of
the bridge. The feedback signal, V; across the
parallel combination R,C, is applied to the non-
inverting input terminal of the op-amp. The gain
of the op-amp amplifier is

R
A= 1+-F (5.42
R, (5-42)
and feedback factor, B from Fig. 5.18 is

N
A
O
wf-l—— < —p +

v 7 Fig. 5.20 Wien bridge oscillator showing
B= L = 2 (5.43) the bridge network
V, 2Z,+Z,
1 sRC, +1
where Z,= R, + sC) sC, (5.44)
R,
= 5.4
Ly 1+sR,C, o)
Putting the values of Z; and Z, in Eq.(5.43), we get
p= 1+sR,C, . R,
sC, 1+sR,C,
1+s(R,C, + R,C, + R,C,)+s°R,R,C.C,
Putting s = Jo,
B = JOR,C, (5.45)
1+ jo(R,C, +R,C, +R,C,)- ®*R,R,C,C,
In order B to be a real quantity
Thus, the frequency of oscillation,
- 1 (5.49
’ 2n\R,R,C,C,
70) .
and p e o7

" RC,+R,C, +RC,
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Iy = (5.51)

1
3 (5.52)
1

| AP
| A

for sustained oscillations, ;

v IV

A= 1+—I?E-
R,

3=1+EF—

3
Rp=2R;  (5.53)

. or,

. keep growing and it may clip the output sinewave. R
. This problem is eliminated by a practical Wien
| bridge oscillator with adaptive negative feedback
. as shown in Fig. 5.21. In this circuit, resistor R,
s initially adjusted to give a gain so that
| oscillations start. The output signal grows in C

-~ amplitude until the voltage across R; approaches 2 2
. the cut-in voltage of the diode. As the diodes begin

. to turn-on (one for the positive half cycle and the
. other for the negative half cycle), the effective = |
- feedback resistance Ry decreases because the diode T

18 in parallel with the resistance R;. This will Fig. 5.21 Practical Wien bridge oscillator with

- reduce the gain of the amplifier which in turn adaptive negative feedback

 lowers the output amplitude. Hence sustained

. oscillations can be obtained. Further, if the output signal falls, the diodes would begin to turn-
. off thereby increasing Ry which in turn increases gain.

i The two op-amp RC oscillator circuits studied are suitable for the frequency range of
‘___ 10 Hz t0 100 kHz (maximum 1 MHz). The size of R and C components becomes very large for
| Benerating low frequencies. Thus, the low frequency limit is dictated by the size of passive
- Pmponents required. The upper frequency limit is governed by the frequency response and slew
 Tate limit of the op-amp used. For generating high frequencies in the RF range, the oscillator |
| Clrcuits are usually designed using BJT and LC tuned circuits or crystal oscillators. |

If the gain |A| > 3, sometimes oscillations E
1

o

R3
| l V
o
R,

Chapter 5

LC OSCillaiim“’s

For Benerating high frequency sine waves in the RF range, LC tuned circuits are used. The
H{ost commonly used LC oscillators are Colpitts oscillator and Hartley oscillator which are
- SCussed here.




ACTIVE FILTERS

[ZY INTRODUCTION e ]

Electric filters are used in circuits which require the separation of signals according to their

frequencies. Filters are widely used in communication and signal processing and in one form
~or another 1n almost all sophisticated electronic instruments. Such filters can be built from, (1)

~passive RLC components, (11) crystals or (iii) resistors, capacitors and op-amps (active filters).
~ In this chapter, we are discussing (i) RC active filters and () switched capacitor filters.

Further, active filters in its low-pass, high-pass, band-pass, band elimination configura-tion and
_ state variable filter have been discussed.

' RC ACTIVE FILTERS s - :

: A frequency selective electric circuit that passes electric signals of specified band of frequencies
md attenuates the signals of frequencies outside the band is called an electric filter. Filters may
lﬁe analog or digital. Our point of discussion, in this chapter, will be analog filters.

The simplest way to make a filter is by using passive components (resistors. capacitors,
~inductors). This works well for high frequencies, that is, radio frequencies. However, at audio
_ Brequencies, inductors become problematic, as the inductors become large, heavy and expensive.
| ?01' low frequency application, more number of turns of wire must be used which in turn adds
?0 the series resistance degrading inductor’s performance, i.e. low @, resulting in high power
AIsapation,

 The active filters overcome the aforementioned problems of the passive filters. They use op-
D 48 the active element, and resistors and capacitors as the passive elements. The active
1 by enclosing a capacitor in the feedback loop, avoid using inductors. In this way,
lductorless active RC filters can be obtained. Op-amps filters have the advantage that they can
%?@m"ide gain. Thus, the input signal is not attenuated as in the case of passive filters. Also, as
2 P-amp is yged in non-inverting configuration, it offers high input impedance and low output
Mpedance, This wil] improve the load drive capacity and the load is isolated from the frequency
h “'_'det‘ermining network. Because of the high input impedance of the op-amp, large value resistors
be used, thereby reducing the value (size and cost) of the capacitors required in the design.

¥ _— e e JR— T R i, A —
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The active filters have their limitation too. High frequency response 1s limited by the 2ain.

bandwidth (GBW) product and slew rate of the op-amp. MoFeovel', th,e hi'gh frequency active
filters are more expensive than the passive filters. The passive filter in high frequency range

is a more economic choice for applications.
The most commonly used filters are:

Low Pass Filter (LPF)
High Pass Filter (HPF)
Band Pass Filter (BPF)
Band Reject Filter (also called Band Stop Filter) (BSF)

The frequency response of these filters is shown in Fig. 7.1, Where'dashed curve indicateg
the ideal response and solid curve shows the practical filter response. It 1s.n0t possible to achieve
ideal characteristics. However, with special design techniques 1t 1s possible to closely approx;.

mate the 1deal response.
A Gain
AGain

Actual

Ideal
I
| Stop band—»
:
|
» f
fy
(a)
gGain |deal
1 1—=== c—--"- ':‘/
Stop e N Stop .
band l : band
0.707[ , A
¢ Pass|band-»
] 1 | _’ f

f £, f
(c)

Fig. 7.1 Frequency response of filters, (a) Low-pass, (b) High-pass, (c) Band-pass, (d) Band-reject

Active filters are typically specified by the voltage transfer function,
V,(s) |
Vi (s)
Under steady state conditions (i.e., s = j®)
H (jo) = |H (jo)|e/ ¢

where | H (jw)| is the magnitude or the gain function and ¢ () is the phase function.
the magnitude response is given in dB as

20 log |H (jo)|

H(s) =

(7.1)
Usually

(7.2
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qase response 18 given in degrees ag
— ¢ (0) X 57.296 degrees (7.3)

qomenmeb active filters are specified by a loss function V. (s)/V, (s). The use of loss function
 carry over from passive filter design.

:i; ‘ﬂd the ph

Chapter 7

F.‘ | 7‘2‘1 First Order Low Pass Filter

A,cﬂ‘e filters may be of different orders and types. A first order filter consists of a single RC
- pef“ ork connected to the (+) input terminal of a non- mvertmg op-amp amplifier and is shown
m Fig. 7.2 (a). Resistors R, and Ry determine the gain of the filter in the pass band.

Y |
T'ff R oltage gain
a R RF
{_\W -Q— VWY Ao _L
4 ok {17 F ) S .. 20
; ] - , Slope:
- V. o V. ! -20 dB/decade
V + 1
4 ' D—m’_cj_ i
.- 4 :
& < Pass band b:ri— Stop band —
v ¢ >
f, f
(a) (b)

Fig. 7.2 (a) First order low-pass filter, (b) Frequency response

The voltage V, across the capacitor C in the s-domain is

1
Vi(s) = AS—C—V (s)
R+—
sC
. el
b Vi(s) RCs+1 (7.4)
_;"hefe V(s) is the Laplace transform of v in time domain.
The closed loop gain A, of the op-amp is,
V, (s) R
A = 1+ F - 5
Vi (s) [ Ri) 5)
3 S° the overall transfer function from Egs. (7.4) and (7.5) is
' _ Vo(s) V,(s) Vils) Ag
H gy 200, 100 7.6
Lr(8) V.s) Vi(s) V.:(s) RCs+1 L5
A an

RC
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mﬁmffm. l[]‘]:(ﬁ'}. — V9 (8} = j— — A’—(%— (= .
Vils) 8 .1 s+ /5
O,

This 1s the standard form of the transfer function of a first order low pass system
To determine the frequency response. put s = jo in Eq. (7.8). Therefore. we get

Hyp(w) = - SR }

PV = T e RC T 1+ A1) 7

here s s il f-2

Wi v = 2xRC = ox

At very low frequency, ie. f<<f;

H pjo) =~ A, (7.10,

At /: fh*
H (o) = %:0.70744,, a1,

At very high frequency 1.e. f >> f;
H, p(jo) << A, = 0 (7.12)

The frequency response of the first order low pass filter 1s shown in Fig. 7.2 (b). It has the
maximum gain, A at f=0 Hz. At f; the gain falls to 0.707 time (i.e. -3 dB down) the maximum
gain (A). The frequency range from 0 to f} 1s called the pass band. For f > f, the gain decreases
at a constant rate of -20 dB/decade. That 1s, when the frequency is increased ten times (one
decade). the voltage gain is divided by ten or in terms of dBs, the gain decreases by 20 dB (=
20 log 10). Hence, gain rolls off at the rate of 20 dB/decade or 6 dB/octave after frequency, f,.
The frequency range [ > [, 1s called the stop band. Obviously, the low pass filter characterstics
obtained 15 not an 1deal one as the rate of decay 1s small for the first order filter.

7.2.2 Second Order generalised Active Filter (Sallen-key filter)

An improved filter response can be obtained by using a second order active filter. A second order
filter consists of two RC pairs and has a roll-off rate of — 40 dB/decade. A general second order
filter (Sallen-Key filter) 1s shown 1n Fig. 7.3. The results derived here can be used for analysing

low pass and high pass filters.
The op-amp 12 connected as non-inverting amplifier and hence,

R
v, = (1 + ——f-] UB - A” Uy (713)
i,
R =
where A = ”“ﬁt (7.14)

and vy 15 the voltage at node B.
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kirchhoff's current law (KCL) at node A gives

R Re
0 Y, = oYy + Yo + Yy -0 Y, - 0y, ____E'VW i | ':‘
] @
— - -
(Y, + Yot Yy - Yy - VX2 (7.15) Q
E A, VA e v B=
= YI ' Yg Ol + Vo R -
where Uy 18 the voltage at node A. i Iq IB -
| KCL at node B gives, Y, v
|
_ U,(Y5 +Y,
[-J‘.'\Y.’., s l'”(}/-’} + Yl) - D( jl‘) 4) T ] j-?-_
Fig. 7.3 Sallen-Key filter
_u,(Ys+Yy) (General second order filter)
Ua Mz (7.16)
Substituting Kq. (7.16) in Eq. (7.15) and after simplification, we get the voltage gain as
L - A 1Yo
U Y + Yy (Y + Y, + V) + VoY, (1- Ay) (.17
To make a low pass filter, choose, Y, = Y, = 1/R and Y3=Y, =sC as shown in Fig. 7.4.
b For simplicity, equal components have been used.
_;- ' From Eq. (7.17), we get the transfer function H(s) of a low pass filter as,
H(s) = 4
O R RIT:CRG A+ (7.18)
- This 1s to note that from Eq. (7.18), H(0) = A, for s = 0 and H (=) = 0 for s = e and obviously
| the configuration 1s for low pass active filter. It may be noted that for minimum de offset R,Ry/
(Ry + R) = R + R = 2R should be satisfied. . .
. Second order physical systems have been ' .
studied extensively since long back and their =
#lep response, damping coefficient and its cause R R |
iand effect relationship are known. We shall f LA VVAVN—O—] v,
€xploit those ideas in case of second order RC - =
nctne filter. The transfer function of low pass b
#cond order system (electrical, mechanical, T
hydraulic or chemical) can be written as, B N
9 Fig. 7.4 Second order low-pass filter
A, 0
Hp(s) = 5—>D— (7.19)

$° +0LmyS + Oy

{”h = upper cut-off frequency in rqdlana/qecond
@ = damping coefficient

COmparmg liq. (7.18) and Eq. (7.19), we get,
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1
“h T RC (7.20)
a=(3-4)

(7.2])
That 1s, the value of the damping coefficient o for low pass active RC filter can be determipe d

by the value of A, chosen.
Putting s = yo in Eq. (7.19), we get

Hyp (0) = —— 0
Lp 0 (j o/, )? + jo (o/o,) + 1 (7.22)
the normalized expression for low pass filter is
A
Hip (o) = - .
Lp ) sf +as, +1 v

()
where normalized frequency s, = J (—5—-)
h

The expression of magnitude in dB of the transfer function 1is,

20 long(Jﬂ))l %8 1+ jo(w/op) + (Jo/oy Y
A
= 20 log > = .
[ ) 0 2
\ \ Wy On

The frequency response for different values of & is shown in Fig. 7.5. It may be seen that
for a heavily damped filter (o > 1.7), the response is stable. However, the roll-off begins very

+10
0.5
0.866 e
0 S _ 0.766
1.06 Chebyshev

~10
5 1.414 Butterworth
T -20 - 1.73 Bessel

I
_30 o
40 . N

0.1 0.2 0.3 1 2 3 4 5 10
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4 v to the pass band. As 0. is reduced, the response exhibits overshoot and ripple begins to
e ot },u. .t the early stage of pass band. If o is reduced too much, the filter may become
| apf‘fj‘awry_ The flattest pass band occurs for damping coefficient of 1.414. This is called a
: mlt orworth filter. Audio filters are usually Butterworth. The Chebyshev filters are more
.. Buh oy damped, that is, the damping coefficient a is 1.06. However, this increases overshoot and
:'liiging oCCurs deteriorating the pulse response. The advantage, however, is a faster initial roll-

of 1.73. This gives better pulse response, however, causes attenuation in the upper end of the

::bﬁIKL
ass | o |
We shall discuss only Butterworth filter in this text as it has maximally flat response with
4amping coefficient o = 1.414. From Eq. 7.24, with o = 1.414, we get

. R’
J0log |Hyp(jo)| = 20 log| =2 | =20 log ——Ze -

S

. Hence for n-th order generalized low-pass Butterworth filter, the normalized transfer function
. (or maximally flat filter can be written as

H p(jo) 1 )
A ] (7.26)

()

| 7.2.3 Higher Order Low Pass Filter

. A second order filter can provide —40 dB/decade roll-off rate in the stop band. To match with

' 1deal characteristics, the roll-off rate should be increased by increasing the order of the filter.

- Each increase in order will produce —20 dB/decade additional increase in roll-off rate, as shown

_in Fig. 7.6. For n-th order filter the roll-off rate will be —n X 20 dB/decade.

. Higher order filters can be built by cascading a proper number of first and second order
filters. The transfer function will be of the type,

A =1
- =1 _20 dB/decade
_20'- =
o T 3\ 40
‘E’ —40&
; 1\4 \_-60
© 50 N5 |
A | i -80
I\
= |
-80 B h
N ! 2 |
-100 =
i F _I -120 :
__120 I L 1 | T L 3 1 L1
0.1 1 2 10 20 40 100

0.3 k 3k 6 K

Fig. 7.6 Roll-off rate for different values of n

o compared to Butterworth. A Bessel filter is heavily damped and has a damping coefficient

Chapter 7
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I{( ) _ 'Aﬂl A:}‘Z . Ai‘l
S) = 2 2 1
s, +o;s, +1 s, +0s, +1 8, +
seoond another second firet order
order section order section section

Each term in the denominator has its own damping coefficient and critical frequeney
Table 7.1 shows the denominator polynomials upto 8-th order Butterworth filter (see f\pp{t-ndﬁ

7.1).

Table 7.1 Normalized Butterworth polynomial

—— — - = — —— —_— — __—_-—__'—'—'—-—._
Order Factors of polynomials
n

S, +1
53+1.4145,,+1

1
2
3 (s + 1) (85 + 5 +1)

4, (§2+ 0765 5 + 1) (52 + 1.848 5, + 1)

5. (5, + 1) (2 + 0618 s, + 1) (52 + 1618 § + 1)

6 (£ + 05185 +1)(§+1414 5 + 1) (§ + 19325 + 1)

7 (S +1)(§§+0445 5, + 1) (§7 + 1.247 5, + 1) (§ + 1.802 5, + 1)

8. (5 + 0390 5, + 1) (§ + L111 § + 1) (§ + 1663 5, + 1) (§ + 1.962 s, + 1)

m__—___—'_—'_‘_'_—-—_-_—_—_-__—_____h

Example 7.1
Design a second order Butterworth low-pass filter having upper cut-off frequency 1 kHz Then

determine its frequency response.

Solution

Given f, =1 kHz =1/2 n RC. Let C = 0.1 uF, gives the choice of R = 1.6 kQ From Table 7.1.
for n = 2, the damping factor a = 1.414. Then the pass band gain A =3 —a =3 - 1414 =
1.586. The transfer function of the normalised second order low-pass Butterworth filter is

1.586
s:+1.414 s +1

Now 4, =1+ Rp/R, = 1.586 = 1 + 0.586. Let Ry = 5.86 kQ and R, = 10 k2. Then we get
4, = 1.586. The circuit realized is as in Fig. 7.4 with component values as R = 1.6 k2. € =
0.1 uF. Ry = 5.86 kQ and R, = 10 kQ.

For minimum dc offset R. ||R: = 2R (at dc condition. capacitors are open) which has not been
taken into consideration here. otherwise,.we would have to modify the values of K and €
accordingly which comes out to be R = 1.85 kQ, C = 0.086 uF. R = 5.86 kQ. R, = 10 k{2

The frequency response data is shown in Table 7.2 using Eq. 7.25 and the frequency rang®
18 taken from 0.1 £} to 10 f, 1.e.. 100 Hz to 10 kHz as fn = 1 kHz.
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Table 7.2
™~
Frequency, f in Hz Gain magnitude in dB 20 log (v/v) T
100 (0.1 A) 4.00 'E.
200 (0.2 A) 4.00 2
500 (0.5 £) 3.74 U
1000 (1.0 £) 1.00
5000 (5 #) ~23.95
10000 (10 4) -35.99

ve example 7.2

Design a fourth order Butterworth low-pass filter having upper cut-off frequency 1 kHz.

. solution

| The upper cut-off frequency, f, = 1 kHz = 1/2n RC. Let C = 0.1 puF gives the choice of R = 1.6

L Q. From Table 7.1, fori n =4, we get two damping factors namely, o, =0.765 and o, = 1.848.
. Then the pass band gain of two quadratic factors are

A, =3-0,=3-0.765=2235
A02 = 3 — O, = 3 — 1.848 = 1.152
The transfer function of fourth order low-pass Butterworth filter is

2.235 | 1.152
sz +0.765s, +1 s> +1.848s +1

RFI

Now, Ay = 1+—F=2.235 = (1 + 1.235)

i1
Let Rp; = 12.35 kQ and R, = 10 kQ, then we get A ; = 2.235
Similarly,

R
A,=1152=1+0.152=1+—2
Riz

Let Rp, = 15.2 kQ and R, = 100 kQ, which gives A, = 1.152.
The circuit realization is shown in Fig. 7.7.

10kQ  12.35 kQ 100 kQ 15..2 kQ

N _E—’\/W NNV

e

e #

1.6kQ 1.6 kQ [ 16kQ 1.6kQ PR
O~ AN ———AAAN —AANN +
T-0.1 uF 8 T 0.1 4F
0.1 uF 5~ 0.1 uF =
“——— Second order section —» <4— Second order section —»

Fig. 7.7 Realization of 4-th order Butterworth low-pass filter
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Example 7.3

Determine the order of a low-pass Butterworth filter that is to provide 40 dB atténuangy g,
wy, = 2. L

Solution
Use Eq. 7.26, then

20 log Hio) _ -40dB

A
gives H(jo) _ o1
A,
SO (0.01)* = =
' - 14 9%0
or., 98 = 10* - 1

Solving for n, we get n = 6.64
Since the order of the filter must be an integer so, n = 7.

7.2.4 High Pass Active Filter

A high pass filter is the complement of the low pass filter and can be obtained simply by
interchanging R and C in the low pass configurations discussed earlier. A first order high pass
filter 1s shown 1n Fig 7.8. It can be seen that a single RC network is connected to the non-
inverting terminal of the op-amp and the gain of the filter is controlled by the feedback network

R, Ry.

Re Voltage gain

— 20 dB/decade

v :
V, e i : + Vo :
R 4= Stop band —"‘ €—Passband —*
: : »
= f

" fl

(a) (b)
Fig 7.8 (@) First order high-pass filter. (b) Frequency response

The voltage V| at the non-inverting terminal is given by

- 97)
Vi) = e V.(s) y
R+—1—
sC
\71(3) _ RCs (725

or

V(s) 1+RCs




A
;
|
g
|
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chere V() 18 the Laplace transform of v in time domaijn.
Further, output voltage V is given by

V, (8) = (1+*&]Vi(s)

R. (7.29)
The closed loop gain of the op-amp is,
V (s) R
A = L = _F
° Vi(s) L+ R, J7.30)
Thus, the overall transfer function is obtained as
V. (s) A_ X RCs
HES) = =2 = 0
S = Ve - 17RGs (7.31)
o AfIf
Hp (o) = L = §
ar Hp J®) 1+ (f/f) [3 J(D] (7.32)
1
— I = S RC
The frequency response of the filter is obtained from the magnitude, that is
. 1% A f/
'HHP (Jf)lz —‘;f’— = o111 ; (7.33)
L+
= AO
- 7 8
JL+(5/f7 24

The frquency response of the first order high-pass filter is shown in Fig 7.8(b). At very high
requencies ie. f > f, the gain is constant at A,, and for f < f;, the gain rolls-off at a rate

“-20 dB/decade. The frequency range below f; is called the stop band and the frequency range
above f, is called the pass-band.

It may be noted that the high-pass filter can be obtained from the low pass filter by applying

o) , ‘
: ‘¢ trangformation

S W, 7.35)
— g = 7.35
Dolip S lnp

'. TI R - : :

: a;{;‘;_a low pass filter can be converted to a high pass filter simply by interchanging R

:&“mMe7ﬁJ

N

; Z;g“ And plot the frequency response of a first order high pass filter for pass band gain of

nd lowep cut-off frequency of 2KHZ.

™~
-
s,
Fur
Q.
o
K
@




( syven /I = 2 kHz

Assume C =0.0]) }.I,F

SINCE f; = 1

: ’ 2n RC

Therofore R = :
27 fC

1
2t 7 2 2 10° 107"
= 7.95 kHZ

i

Further, to obtain pass band gain of 2,

;mumf‘

Thus,
TEI hlf* T

K
A :2:]+J-
R

s

1

R, = R = 10 ki)

we can obtain pass band gain of 2. The frequency response data is shown in

;.

Table 7.3
Ffm @/ﬂ C;afﬂ in dg
v
2) 27 Vi o
V,
100 0.10 - 20.01
200) 0.20 ~ 14.02
4000 0.39 - 8.13
1000 0.89 - 0.9/
3000 1.66 s
10,0600 1.96 5.85
100 m", - 2.00 6.02
4
s 10
' B07! S D) ) ittt <z
| 3 dB.o—
() ol _,f/‘f ,
2y o i -
c 10 < 70 dB/dncade
c oz 1
r_’; P !_/f . I
1) 4 Ao band — » 4— ——————— Pgss band >
' [ r
2y
| _
. heedicdcbidbiisl "tk g el _ﬂ.Jq_J._L.J,_LuU.___,__A_.HU—J-JJ-UJ—D[
100 10001 = 2kHz 10 kHz 100 kHz 1 MHz

Fig. 7.9 Frequency response of first order high-pass filter.
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i < condO rder High Pass Active Filter

|1 pass (ilter 18 the Complement of the low pass R " .Rf...

:‘r .nd can be obtained simply by Interchanging R I
| f:.i (in the low pass configuration and is shown in ) ““"\

__=10. Putting Y; =Y, = sC and Y, = Y, =G =1/ | | 0V
i | Eq. (7.17), the t on VL 1] > ;
-~ pn the general kg - the transfer function V, ¢ C

B A, s H
Hyp(s) = s* +(3 - A, s + m,2 8 ..
Fig. 7.10 Second order high pass filter
- 1
N Dy =
g whee " RC
A
o Hyp(s) = : : (7.37)
: )
| 1+——’-(3—A0)+(9L]
S S

. From Eq. '(7.37')- for = 0, we get H = 0 and for @ = =, We get Hyp = A . So the circuit
E mdeed acts hke high pass filter. The lower cut-off frequency
" 1

f :f‘ =

L 2n RC

L and 18 same as In the low pass filter.

. Puting s = jo 1n Eq. (7.37) and 3 — A, = o =1.414, the voltage gain magnitude equation
o the second order Butterworth high pass filter can be obtained as

. v, A,
|H”P (JUJ)' - —‘7— B \/1 4 (f/f)4 (738)
: [
Hence
H .(jo) 1
[{; _ (7.39)
! O f 4
1+ ( —[]
V' \f
| "her-order High-pass Filters

he voltage transfer function for the nth order Butterworth high-pass filter

7 - 1 ’ -
Lf/,.-f//‘); SR . ——— (1*10)

Chapter 7
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Higher order filters can be designed by adding additional RC networks, that is by cascadip,
a required number of first and second order filters. Fig 7.11 (a) and (b) shows a third-ordey ang
fourth order high pass Butterworth filter respectively.

R, R
= VWV
C G C O\
| { | { | [ t :
Masan | I\ I\
R, § g % R,
(a)
R Re R Re
VN WA —A —AM
B C y - \
C C oy,
Vio—| {{ ' I\ { C o g
R1 i R2 R1 % % R2
(b)
Fig 7.11 (a) Third order
(b) Fourth order High pass Filter
Example 7.5

Design a second order Butterworth high pass filter having lower cut-off frequency of 1 kHz.

Solution

Refer to Example 7.1. The same value of cut-off frequency for Butterworth LPF has been Laliez
so the values of R and C will be the same. Also the values of Ry and R; are same as _CEIICU}_"'-‘BZ)
in Kxample 7.1. Only the frequency response will have to be calculated using Equation. ({- F-
The circuit configuration is as in Fig. 7.8 with component values R = 1.6. kQ, C = 0.1 pt
Rp = 5.86 kQ, R, = 10 kQ.




:
:

7‘2'5 gand pass Filter
: ™~
ehere are tWo types of band pass filters which are classified as per the figure of merit or quality
.a;:[ur Q %
- \arrow band pass filter (@ > 10) -
!n) wide band pass filter (Q < 10) 5

The following relationships are important:
Q= f/BW=/[/J - f)
ﬂﬂd fo = th ﬁ

shere [, = upper cut-off frequency
f; = lower cut-off frequency
f. = the central frequency

" Narrow Band Pass Filter

The important parameters 1n a band pass filter (BPF) are upper and lower cut-off frequencies

f, and f)). the band width (BW), the central frequency (f,), the central frequency gain A, and

selectivity @. Consider the circuit of Fig. 7.12 (a). The circuit has two feedback paths and the
~ op-amp 1s used in inverting mode of operation.

The node voltage equation at node A is

v Y, + v, Y= v, (Y, + Yo + Y, + Y) (7.41) |
Assuming, vg = 0 (virtual ground), the node voltage equation at node B is,
Up Yo = — 0, Y5
Upo = — U, (Y5/Yy) (7.42)

Putting v, in Eq. (7.41), we get

Y, + v, Y, = U%(E+I§+Y3+n)
2

Y,Y; +Y.Y: +Y,Y: +Y.Y, +Y,Y,
0 Y2

[l
G

o, v.Y,

Hence o - Y)Yy (7.43)
U; YoYs + Y5 +YoYs + YaYs + Y,Y5

" For this circuit to be band pass filter, put Y, = G, Y, = sC,, Y3 =sC;, Y, = G, and Y; =
5 @8 shown in | ig. 7.12 (b). Then the transfer function becomes,
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C,
| L
Y, R
R5
Y. ——"WWMAA—_|

i <

- +
T @ -

< (b)

Fig. 7.12 (a) Band-pass configuration (b) Second order band-pass filter

H(S) - VO(S) _ —S(J‘ng
‘/1(8) 820203 +S(Cz +C3)G3+G5(G‘1+G4)

_ -(n _
- H(S) 303+%(C2 +C3)/Cz +(G]+G4)G5/SCQ ({44)

The transfer function of Eq. (7.44) is equivalent to the gain expression of a paralle] RLC

circuit of Fig. 7.13 (a) driven by a current source G'v; and with band pass characteristics as
shown in Fig. 7.13 (b). The gain expression is,

Vo(s) _ @ -G’

A 7.45
Vi(s) Y sC+G+1/sL (7.45)
*
@ = G L v,
4
(a) . (b)
Fig. 7.13 (a) A paralle! RLC circuit (b) Band-pass characteristics
Comparing the gain expression of Eqgs. (7.44) and (7.45), we get,
(G = Gl (7.46)
G5 (Gy + Gy)
G = GE (Cfg + Cq) (7.48)
CQ '
and {] = C:’ - (749)

At resonance, the circuit of Fig. 7.13 (a) has unity power factor, i.e. imaginary part 18 Zero
which gives the resonant frequency w, as,

1 (G, +Gy) 7.50)
o2 = s, 21 4 (7.
" Coly

e

°  LC
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The gain at resonance 1s,

p Yo = _G__G_ G/G)C,
Ul W =, G G Cz o C3
4 _ _(R/R)C,

Cz +C3

The @ factor at resonance is,

The bandwidth BW is given by,

BW=f,—fi=to_ % ___ o,
" Q, 2@, 2nRw.C

_ 1 _ G G5(Cg+C3)
2nRC 2nC 21 CoCq

and the centre frequency f, = /£, f;
Now for C, = C; = C, the gain at resonant frequency from Eq. (7.51) is,

‘ Y% = R:) —
Y lo=s 2R, N
1 o = VG (G +Gy)
° C
. G B
8W = nC nRC f

(7.51)

(7.52)

(7.53)

(7.54)

(7.55)

(7.56)

We have three independent design )
:;ranlemr Egs. (7.54), (7.55) and (7.56) ok
3 dgﬂln at resonance, resonant frequency s Q=1 |
iu:k bandwidth But there are four __ -10f
“"Wn paramcters of the circuit such 3 [
b, and (;.. So we have to . i :
PN d"Y one parameter arbitrarily.  § 30 105
k., Bure 7.14 shows g plot of freq-uency i 50
lgl})]‘mfse for difcrent values of Q. The —0_—
(- , " "
l,(jwr t]:e t) Lre ;-4.}1;11'])(--31' the fll.ter. ~50 i L2 1 1111
UWO fo 2k whove 2 f, ) all filters 01 02 0304 06 08
) W ,
*-the A~ 20 diz/decade independent of ,
B "Ne of @ This is limited by th
t %o Re ¢- + s limited by the Fig. 7.14 Single op-amp band-pass filter response
Pairs i1 the circuit. To obtain

harPEr rou -0

[i rate away from the center frequency, one should cascade several filters.

™
=
V
P
Q.
T
o=
O
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[t may further be noted that using Egs. (7.52, 7.54 and 7.55) 1n Eq. (7.44), the standarq
transfer function of a bandpass filter is obtained as,

He =A@ /Q)s A oo ,..
i~ s2 +(0,/Q)s + 02  s%+ 005 + 0 L
. A, 00,
or, in dB, we get, 20 log| H(s)| = 20 log | — 5 (7.58)
s + 0,8 + W,
where the damping factor o = —QL

It is obvious from Eq. (7.57) that for << ®, and ® >> o, the gain 1s zero and for
® = o, the gain is A,. It may be noted that A, is negative.

Wide Band-Pass Filter

A wide band-pass filter can be formed by cascading a HPF and LPF section. If the HPF and
I.PF are of the first order, then the band-pass filter (BPF) will have a roll-off rate of — 20 dB/

decade
For the high pass section of Fig. 7.15 the magnitude of gain 1s
R, R, R, R
—AAA VA A— FW VAVAVA
s C, \ L R, = .
c: | / / v,
| =
< HPF > < LPF »
Fig. 7.15 First order band-pass filter
wel = TR T senfRCo || T I /R | L+ (/R
where f[ — 1 (760)
- 2 Ry
Similarly, for the low-pass section of Fig. 7.15, the magnitude of gain 1S
7.61)
II'ILP' —_ A02 (
J1+(F/ )
(7.62

1
where —
fh 2 T Rl CI
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The voltage gain magnitude of the wide band pass filter is the product of that of LPF and

HPF. One can calculate the frequency response from the equation
| _ A, (f/f)
v | /f (7.63)

S+l e (/)

where the total pass band gain A = Ay X A,

In a similar fashion, to obtain BPF of —40 dB/decade fall-off rate, second order HPF and LPF
sections are to be cascaded.

Example 7.6

Design a wide-band pass filter having fi = 400 Hz, f, = 2 kHz and band gai '
the value of @ of the filter. i pass band gain of 4. Find

Solution

The pass band gain is 4. The LPF and HPF sections each of Fig. 7.15 may be designed to give

gamn of 2, that 18, A, = 1 + Ry/R; = 2. So Ry and R, should be equal. Let Ry = R, = 10 kQ f
each of LPF and HPF sections. ) F i g

For LPF, f, =2 kHz = 1/2 n R|C,. Let C; = 0.01 pF gives R, = 7.9 kQ. For HPF, f, = 400 Hz
=U2n R,C,y. Let Cy = 0.01 pF gives R, = 39.8 kQ.

Again f, = [f.f, = /2000 x 400 = 894.4

Q =f/BW = f/(f, - f,) = 894.4/(2000 — 400) = 0.56
Obviously, for wide band pass filter, @ is very low, i.e., R < 10.

Example 7.7

Ihe[resonant frequency f, of a band-pass filter is 1 kHz and its BW is 3 kHz. Find (i) Q
L) ‘and fh‘

Solution

_f;, We know that quality factor, @ is given by,

ﬁ) Q'—"- f:, o 1)(10’3
BW 3,10

= 0.33

e Q@ <10 it s 4 wide band filter.

W) It can be shown that

Chapter 7
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and h =1 + BW,
we find f, = 302.77 Hz
and f =3302.77 Hz

7.2.6 Band Reject Filter

A band reject filter (also called a band stop or band elimination) can be either (1) N

: aITow ban
reject filter or (i1) Wide band reject filter. The narrow band reject filter is commonly cg]) d:

notch filter and is useful for the rejection of a single frequency, such as 50 {
frequency hum.

There are several ways to make notch filters. One simple technique is to subtract the bang
pass filter output from its input. This principle is illustrated in Fig. 7.13 (a).

The band pass filter discussed earlier has an inverted output as the gain or transfe
(7.35) 18 negative. Therefore, while implementing Fig. 7.13 (a), we must use a summer
instead of a subtractor. Also, the band pass filter has a gain of A, so that output at the centre
frequency will be —A, x v,. To completely subtract this output, the input of the
summer must be precisely A v.. Thus, a gain of A, must be added between the Input signal and
the summer as shown in Fig. 7.13 (b). The output, of the circuit in the s domain is

Z power lipe

r Eq.

Band pass filter
" /\ : Subtr- .
v, 1 actor v,
f

f
_*

Entire input signal ()

Notch response

Second order
band pass filter

— A 00,S
i ._ . e 2 ——-f_)
V(s) ’ i s’ + aw,s + mzn Q V. (s)

(b)
"19- 7.16 (a) Notch filter block diagram (b) Practical notch filter block diagram
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- \
Vols) = A, Vi(s) + 4, o0 0,5 Vi(s)

ST o oys + 0 b
¢ e
b e %
; S+ 0L0)S + 2 -~
/ .
4 - al1- oL, S

L S 00,8+ 0

_ A (s* + 0?)

| s* + 0w,s + 0 L%

This is the transfer function for a second order notch filter and the circuit schematic is shown

i e : .
. inFig. 7.17. It is evident from Eq. (7.65), that for @ << @_and for @ >> o the oac _

: ’ s band

s |A,] and at frequency ® = ®, the gain is zero. . 0 P gain

C
I

v, 0 AA—]

Re =

< Band pass filter —>< Summer 4

Fig. 7.17 Notch filter schematic

Anot_her commonly used notch filter is the twin-T network as shown in Fig. 7.18 (a). We will
5— determine the notch frequency, @ factor and bandwidth for this configuration.

. No_de voltage equations in s-domain (by KCL) for the active filter circuit of Fig. 7.18 (a) can
; be Written as, N

Atnode A:  (V, - V,)sC + (V, - V) sC + (KV, = V)2G =0
sC V, + (sC + 2KG) V, = 2(sC + G) V, (7.66)

aplace transform of the voltage at node A. Similarly V, and V, are transformed
put. The s in the parenthesis has been dropped in the Laplace transform for

¢ Or,

 Yhere Vi the |
- 1put and gt

| Bmplicity
L A
| Alnode p. (V, = Vp)G + (V, - V)G + 2(KV, - Vp)sC = 0
- 0 .
k™ GV, + (G + 2 KsC) V, = 2(G + sO)V,, (7.67)
- Whe :
‘ here Vi is the LLaplace transform of the voltage at node B.
| " hode p. (VAx=V)sC+ (Vy-V)G=0
. Or

'

sC V4 + GV = (G + sO)V, (7.68)
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where, K =R,/(R, + R,) and G = 1/R (|3' A G
From these node voltage equations, the transfer i ) . <
function can be written as, ?,_—' R ' 8 R +A, ——
_ Vi G? + s2C? R & (el '
H(s) Rjzg == 0E
V. @+sC2+4(1-K)sCG %&
_ s? +(G/CY
7.69 =
s?2+(G/ICP +4(1-K)s(G/C) ( ) <
In the steady state (i.e. s = jo), j%
: 2 _ 2 <
H(o) = =
() : (7.70) Fig. 7.18 (a) Twin-T notch filter

w?-0?-j4(1-K)ow,
where, ®, = G/C = 1/RC

; _ 1
ie., 0 = 5 b0 (7.71)

From Eq. (7.70), H(jw) becomes zero for ® = 0, and approaches unity as o << ®, and for
® >> ,. In practice, the high frequency response will be limited by the high frequency response

of the op-amp. At 3-dB points, | H| = ]/JE
i.e. w? -0 = +4(1 — K) o o,
or (w/w,)? +4(1 — K) (/o) —1 =10 (7.72)

Solving the quadratic equation, we get the upper and lower half power frequencies as,

fu= fo[ 1+40-KF +20-B)] (1.73

and fi= f[J1+41-K? -20-K)

The 3-dB bandwidth,
BW= f, —f,=4(1 - K)f,

fo __ 1 (7.76)
BW 4(1-K)

As K approaches unity,  factor becomes very
large and BW approaches 0. In fact, mismatches
between resistors and capacitors limit the
Q-factor and BW to practically realizable value.
It 18 advisable to use the components of 0.1 per
cent tolerance resistors and 1 per cent tole-rance
capacitors for very high value of @-factor. The
frequency response is shown in Fig. 7.18 (b).

Q:

B

o

20 log IHI dB

Example 7.8
Design a 50 Hz active notch filter. Fig. 7.18 (b) Frequency respon

,4
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50|ution

¢ Given f, = 50 Hz. Let C = 0.1 uF then from Eq. (7.62), we get R = 1/2n£,C = 1/2 (3.14) (50)
-y = 31.8 kQ.

g (10 =9 - |

b For R/2, take two res_,lstors of 31.8 kQ in parallel and for 2C, take two 0.1 uF capacitors 1n
parallel to make the jtwm-T notch filter as shown in Fig. 7.15 (a) where resistors R, and R, are
L for adjustment of gain.

A
- -
g
_._r-
=

Chapter 7

| yide Band-Reject Filter |

A wide band-rejerct filter (Q < 10) can be made using a LPF, HPF and a summer. It is of course
E  pecessary that (1) the lower cut off-frequency f; of the HPF should be much greater than the

. upper cut-off frequency f, of the LPF and (ii) the pass band gain of LPF and HPF should be

i
©  same.
" Example7.9

Design a wide band reject filter having f;, = 400 Hz and fi = 2 kHz having pass band gain
. as 2.

i}

" Solution

For HPF, f; = 2 kHz = 1/2 nR,C,. Letting C, = 0.1 uF gives R, = 795 Q (= 800 Q). Again
A =4, =2=(1+ Rg/R)) gives Ry = R, = 10 kQ (say). For LPF, fn = 400 Hz = 1/2 & R,C,.
¢ Letting C; = 0.1 uF gives R, = 3978 Q (choose 4 kQ). Further A, = A, =2=(1+ Rg/R) gives

* ﬁ-‘ = IE-FIZ 10 1;()2 (say). The schematic arrangement and the frequency response is shown in
1£8. 1. a, .

R R.
—VV VN VVVVAN——
< 10kQ 10 kO Gain
C, \ T
5 o g R,< 800 Q 14
} O— R _E-L Re . 4
T -,
10 kO 10 kQ °
4 k<)
A AN e g
R, | /
C,r~0.1pF
(a)

4i.‘-..

Fig. 7.19 (a) Wide band-reject filter (b) Frequency response

) All Pass Filer
L Ang)).

L ang przj‘ss filter passes all frequency components of the input signal without any attenuation
2 ldes desired phase shifts at different frequencies of the input signal. When singals

- dre ¢
3 ra \f1 . . : '
' Thas, “Smitted over transmission lines, such as telephone wires, they undergo change in

f - These bhase changes can be compensated by all-pass filters. Thus, all pass filters are
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also called delay equalizers or phase correctors. Figure 7.20 (a) shows an all-pass filtey where
R: = R,. The output voltage, v, is obtained by using the superposition theorem:

_ —Rp Ry
U, = R vi+(1+ R ]uﬂ * (177
where v, is the voltage at node ‘A’
Since Ry = R, Eq. (7.77) may be written as

Vo = — U; + 2u, (7.78)
_ -JX
where, U, R_j;,c X v, (179)
Putting the value of ‘v, from Eq. (7.79) to kEq. (7.78), we get,
-JX ¢
= =P. +2_ . -
UO U1 R _jXC Ul (IBO)
= 0| -1~ : 7
- 57 1t j2nfRC )
%  (1-;2nfRC
or s~ \1+j2nfRC Y
The magnitude of % 1s given by
U
U_ol _ \/1+(27£;r‘RC)2 (7.83)
ul i+ @2eRCY

[t can be seen that |v,| = |v;| throughout the frequency range. The phase shift ¢ between
v, and v; 1s given by

4 \oltage

AW A i

/

e
\

\

\

/

\ ., = _1=i2nfRC .

+ I "~ 1+j2rfRC ' 0

V| @ R -'At / O
i A +

& C iRL

- L 4 = = L

(@) o (b)

Fig. 7.20 (a) An all-pass filter (b) Input-output waveform for ¢ = 90°
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¢ = -tan™ 2nf RC —tan™ 2nf RC el

= -2 tan" (2nf RC) (7.84 (b))

Thus. the phase shift ¢ can be varied with frequency for a given R and C, and can be varied
'__g from 0 to —180° as the frequency is varied from 0 to «. As phase shift obtained is negative, the
output U, 1ags Uip. The phase shift can be made positive by interchanging R and C in
" Fig 7.20 (a). |

If R = R, = 10 kQ; R =15.9 kQ and C = 0.01 uF, using Eq. (7.76(b)), it can be seen that
i 9 =-90". The output voltage v, will have the same frequency as the input, but lags v, by 90°
as shown in Fig. 7.20 (b).

TRANSFORMATION | I

. We shall now show that a high-pass, band-pass or band-reject filter can be obtained using an
~ jdeal low-pass transter function by simple frequency transformation. For simplicity, let us

normalize the frequency such that the cut-off frequency of the low pass function is unity. Let
- 'p’ be the frequency domain of the low pass and ‘s’ the frequency domain of interest.

ERLR o e et L BRI N T Lk
Lo 3 . a

Low Pass to High Pass Transformation

We get the high-pass characteristics by the following low-pass to high-pass transformation p=
/s. For example, a third order Butterworth low-pass transfer function in p-domain given as

o=
2 P +2p+2p+1 \1.85)

ﬂ can be transformed to high-pass by the transformation p = 1/s as

H(s) = Ag

s3+2s2+2s+1 L

The high-pass filter has the same pass band flatness as that of the Butterworth low-pass
¢ filter,

A low-pass filter can be transformed to a high-pass filter simply by interchanging R and C
¢ “mponents and vice versa. A simple RC : CR transformation 1s shown in Fig. 7.4 and Fig. 7.10.
This is to note that the 3-dB (cut-off) frequency is the same for both the original low-pass and
¢ the transformed high-pass filter i.e., f; 4g = 1/2 © RC.

Low Pass to Band Pass Transformation

Consider a first order Butterworth low-pass transfer function in p-domain as

_ A y
. (7.87)
() p+1
Let the transformation
2 2
5% + 02 (7.88)

P ((l)h = (D[ )S

Chapter 7
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In order to normalize, put

s, = slw, (789
and quality factor, QR = Do
Wy — W,
Then Eq. (7.88) can be rewritten as
_ Q(sZ +1)
p :n (7.90)

Substituting the transformation from Eq. (7.90) to Eq. (7.87), we get

(A,/Q)s
H(s,) = 2
(5 s +(1/Q)s, +1 (491

This 1s 1dentical with Eq. (7.57) of band pass filter. The quality factor @ is an Important
parameter. If @ 1s very high, i.e. @ >> 1, the filter is called narrow band filter (i.e.. 0, >>
(0, — @) and the response is symmetric about the central frequency .,

Low Pass to Band Reject Transformation

The transformation is given by

_ oy —o)s sy (7.92)
# s*+ w2 Q(s>+1) '
where s, = slo,

The band-reject transfer function corresponding to first order low-pass of Eq. (7.70) and is
given by

A (s2 +1)
s>+ (1/Q)s, +1

Note at s, = j1, | H(j1)| = 0. Such filters are called ‘notch filter with normalized null
frequency as v, = 1.

H(s,) = (7.93)

[ZY STATE VARIABLE FILTER T o,

The state vanable configuration uses two op-amp integrators and one op-amp adder to pr‘omde
simultaneous second order low-pass, band-pass and high-pass filter responses. The circuit ¢
be viewed ar analog computer simulation of biquadratic transfer function. Although, 1n _ge,ne?al"
all component values are different, imposing equal value simplifies algebra without diminishing
versatility.

A simple state variable configuration has been shown in Fig. 7.21 (a). It uses two0 Op'alnler)-
Integrators and one op-amp summer. The outputs Unp, Upp, Uy p Of high-pass, band-pass 'andt::)n
pass filters are obtained at the output of op-amp A,, A2 and AJ respectively. For Bimpl.lﬁca |
it 18 assumed that V' is the Laplace transform of the corresponding v in time domain-

. _ V
The op-amp A, works as an inverting integrator, so the Laplace transformed output VB
given by

PIS
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™~

.

11C 9

| Q.

4+ )

N -

®

"'Vu:
Fig. 7.21 (a) State variable filter
Vep = - ——— Vigp 7.94 E
RCs (7.94)
[fR=1MQ and C = 1 uF, so that RC = 1, we get, |
|
Vpp = 1VH:P }.
S (7.95)

E Th
;. . Vip = —Vi—Vip + o Vip (7.97)
Minating | sp and Vi p using Eqgs. (7.95) and (7.96), we get

Vigp = =V, - ‘—/%B . E‘VHP
S S

EVHP (1 + Et— + lz) = -Vi
S S

. T —— e ———— T —. - e
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So, the high pass transfer function Hyp 1s

Vi s2+as+1 (7.98)

The damping factor a can be set by R, and R, for Bessel, Butterworth or Cheb

. yshev
Compare Eq. (7.98) to the standard high-pass transfer function of Eq. (7.36) as responge
A, s°
s% + 0wy s + ©F (7.99)

So for the high-pass filter of the state variable filter,
A, = -land 0, =1

The low-pass transfer function is obtained by eliminating Viyp and Vip from Eq. (7.97) a5

_Vip_ -1
Hyr = = oo (100

As 1in High-pass filter, the low-pass filter has
A= -1 0y =1
R

\mem

Finally the band-pass impulse response 1s obtained from Eq. (7.97) by eliminating V};p and
Vip as

and o

VBP S
Hpyp = = 7.101
8P V. s?+as+l R
The standard band-pass transfer function as given in Eq. (7.57) 1s
i, P00 ¥ (7.109
2 + 0L WS +
Comparing Kqgs. (7.101) and (7.102), we get
A, aw, =1 (7.103)
‘ 7.104)
W, = ﬁ% =1, (RC has been assumed to be 1) (7.1
therefore, A = ._1_. — R, +R, (7.109

0

o 3R,

: ) €

From the analysis, we found that the band-pass response can be generated by integrating t

high-pass response and that the low-pass is generated by integrating the band-pas amp has

The circuit of Fig. 7.21 (a) can be modified to that of Fig. 7.21 (b) where a fourth "ps' onse by

been used to get a notch filter response. The op-amp A, provides the notch filter rewI:'itten as
combining the low-pass and high-pass output. The notch filter output VN 18

R
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R3
WAMA,
R3
—\NA—— ||
R, I
V, 0—Mv ' R %
1 A, F
: + +V, /
|
> R,
—— A
Rq
—V\N—/

oV

; | R,/3 (for bias current
i compensation)
| ¥

|
|
.

L‘ Fig. 7.21 (b) Four op-amp state variable filter with notch response
)

g B R, R,
. LAV T

4

4
Ff :

Putting the values of Vgp and Vip, the transfer function of notch filter is obtained as

v
B
L
Y g
I
-
o

:

H.. = VN s +1

NT Yy T

Vi 32 +os+1 (7‘107)

it 18 possible to obtain LP, BP, HP and notch filter outputs from a state variable filter
and therefore these are also known as universal filters. Quad op-amps such as LF347, TL074
and TLC274, FET input device are especially suited for these applications. With the advance-
rment of IC technology, universal filters are available in single IC chip form. Datel's FLT-U2
_-: AF100 of National Semiconductor are the typical examples of IC universal filters.

State Variable Formulation

_]‘ may be noted that this filter is called state variable filter because the analog simulation can
% made after the state variable formulation of the proper transfer function.

' _The band-pass filter transfer function of Eq. (7.57) can be rewritten for A =-1,0,=1,
=1 and assuming a dummy variable X, = 'x,(f), as

Vap X 1

L G

RS 7.108

X, V, s*+s+1 5

Let X -1 (7.109)
Vi st+s+1

gl

¥
e
'_-'“
£

' why o .
hich tan written in time domain as

." ::!:.hil

= -

™~
e
V)
-
=
4]
i
O
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£1+3&1+x1 — U

These can be written in matrix form as

. w = T 7 B

Xy 0 1] |x " . 110
] |-l -1] |%,| |1]° A10)

and Yep - (7.111)
X,

or, Vep= [0 1]

| (7.112)
X9

Similarly the high-pass transfer function

Hyyp of Eq. (7.98) with oc = 1 can be rewritten assuming
another dummy variable Y = ./y (¢), as

—_— — + — 7.113
V. s¢+s+1 Vi -
Y _ Y X 1
. Vi X, V; o+l s+s+1 —
Lot X _ : 1 (7.115)
i s“+s+1
It leads to
Hl_ |0 1] [x N 0 " (7.116)
hi'z | ___-1 _1_ L_'x2 3 ._1-
Y | ori
. Y ooy (7.117)
X (s + 1)
leads to in time domain Y= X +x; =29 + x4
or, y = [1 1] "1 (119
Lo _
Hence the output
_ %, | 9
Vap = y — y; = 1 1] xl - (1) y; h
2 _

The simulation of Eqgs.

.y (7.116) and (7.119) is shown in Fig. 7.21 having Vyp as output.
Similarly, the low-pass

transfer function of Eq. (7.84) can be written in the same fashion as
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\
S
X
Chapter 7

x| 0 1| [x N rOhv- )

£’y -1 -1 x| |17 (7.120)

VLP — [—'1 O] *1 |
(g |

The simulation is as shown in Fig. 7.22.
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